

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

Alpha Beta Search

Artificial Intelligence

Part I : The idea of Alpha Beta Search

Part II: The details of Alpha Beta Search

Part III: Results of using Alpha Beta

Alpha Beta Search

3

Reminder

 We consider 2 player perfect information games

 Two players, Min and Mx

 Leaf nodes given definite score

 backing up by MiniMax defines score for all nodes

 Usually can’t search whole tree

 Use static evaluation function instead

 MiniMax hopelessly inefficient

4

What’s wrong with MiniMax

 Minimax is horrendously

inefficient

 If we go to depth d,

branching rate b,

 we must explore bd nodes

 but many nodes are wasted

 We needlessly calculate the

exact score at every node

 but at many nodes we don’t

need to know exact score

 e.g. outlined nodes are

irrelevant

Max

score = 3

Max

score = 2

Min

score = 2

Best move = Right

Max

score = 1
Max

score = ?

Max

score = ?

Min

score = ? < 2

Best move = ?

Max

score = 2

Best move = Left

5

The Solution

 Start propagating costs as soon as leaf nodes are

generated

 Don’t explore nodes which cannot affect the choice

of move

 I.e. don’t explore those that we can prove are no better

than the best found so far

 This is the idea behind alpha-beta search

6

Alpha-Beta search

 Alpha-Beta =

 Uses same insight as branch and bound

 When we cannot do better than the best so far

 we can cut off search in this part of the tree

 More complicated because of opposite score

functions

 To implement this we will manipulate alpha and beta

values, and store them on internal nodes in the

search tree

7

Alpha and Beta values

 At a Mx node we will store an alpha value

 the alpha value is lower bound on the exact minimax score

 the true value might be

 if we know Min can choose moves with score <

 then Min will never choose to let Max go to a node

where the score will be or more

 At a Min node, value is similar but opposite

 Alpha-Beta search uses these values to cut search

8

Alpha Beta in Action

 Why can we cut off search?

 Beta = 1 < alpha = 2 where

the alpha value is at an

ancestor node

 At the ancestor node, Max

had a choice to get a score

of at least 2 (maybe more)

 Max is not going to move

right to let Min guarantee a

score of 1 (maybe less)

Max

score = 3

Max

score = 2

Min

score = 2

Best move = Right

beta = 2

Max

score = 1
Max

score = ?

Max

score = ?

Min

score = ? < 2

Best move = ?

beta = 1

Max

score = 2

Best move = Left

alpha = 2

9

Alpha and Beta values

 Mx node has value

 the alpha value is lower bound on the exact minimax score

 with best play M x can guarantee scoring at least

 Min node has value

 the beta value is upper bound on the exact minimax score

 with best play Min can guarantee scoring no more than

 At Max node, if an ancestor Min node has <

 Min’s best play must never let Max move to this node

 therefore this node is irrelevant

 if = , Min can do as well without letting Max get here

 so again we need not continue

10

Alpha-Beta Pruning Rule

 Two key points:

 alpha values can never decrease

 beta values can never increase

 Search can be discontinued at a node if:

 It is a Max node and

 the alpha value is the beta of any Min ancestor

 this is beta cutoff

 Or it is a Min node and

 the beta value is the alpha of any Max ancestor

 this is alpha cutoff

11

Calculating Alpha-Beta values

 Alpha-Beta calculations are similar to Minimax

 but the pruning rule cuts down search

 Use concept of ‘final backed up value’ of node

 this might be the minimax value

 or it might be an approximation where search cut off

 less than the true minimax value at a Max node

 more than the true minimax value at a Min node

 in either case, we don’t need to know the true value

12

Final backed up value

 Like MiniMax

 At a Max node:

 the final backed up value is equal to the:

 largest final backed up value of its successors

 this can be all successors (if no beta cutoff)

 or all successors used until beta cutoff occurs

 At a Min node

 the smallest final backed up value is equal to the

 smallest final backed up value of its successors

 min of all successors until alpha cutoff occurs

13

Calculating alpha values

 At a Mx node

 after we obtain the final backed up value of the first child

 we can set of the node to this value

 when we get the final backed up value of the second child

 we can increase if the new value is larger

 when we have the final child, or if beta cutoff occurs

 the stored becomes the final backed up value

 only then can we set the of the parent Min node

 only then can we guarantee that will not increase

 Note the difference

 setting alpha value of current node as we go along

 vs. propagating value up only when it is finalised

14

Calculating beta values

 At a Min node

 after we obtain the final backed up value of the first child

 we can set of the node to this value

 when we get the final backed up value of the second child

 we can decrease if the new value is smaller

 when we have the final child, or if alpha cutoff occurs

 the stored becomes the final backed up value

 only then can we set the of the parent Max node

 only then can we guarantee that will not decrease

 Note the difference

 setting beta value of current node as we go along

 vs. propagating value up only when it is finalised

15

Move ordering Heuristics

 Variable ordering heuristics irrelevant

 value ordering heuristics = move ordering heuristic

 The optimal move ordering heuristic for alpha-beta ..

 … is to consider the best move first

 I.e. test the move which will turn out to have best final

backed up value

 of course this is impossible in practice

 The pessimal move ordering heuristic …

 … is to consider the worst move first

 I.e. test move which will have worst final backed up value

16

Move ordering Heuristics

 In practice we need quick and dirty heuristics

 will neither be optimal nor pessimal

 E.g. order moves by static evaluation function

 if it’s reasonable, most promising likely to give good score

 should be nearer optimal than random

 If static evaluation function is expensive

 need even quicker heuristics

 In practice move ordering heuristics vital

17

Theoretical Results

 With pessimal move ordering,

 alpha beta makes no reduction in search cost

 With optimal move ordering

 alpha beta cuts the amount of search to the square root

 I.e. From bd to bd = bd/2

 Equivalently, we can search to twice the depth

 at the same cost

 With heuristics, performance is in between

 alpha beta search vital to successful computer play

in 2 player perfect information games

18

Summary and Next Lecture

 Game trees are similar to search trees

 but have opposing players

 Minimax characterises the value of nodes in the tree

 but is horribly inefficient

 Use static evaluation when tree too big

 Alpha-beta can cut off nodes that need not be

searched

 can allow search up to twice as deep as minimax

 Next Time:

 Chinook, world champion Checkers player

