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Reminder 

 We consider 2 player perfect information games 

 Two players, Min and Mx 

 Leaf nodes given definite score 

 backing up by MiniMax defines score for all nodes 

 Usually can’t search whole tree 

 Use static evaluation function instead 

 MiniMax hopelessly inefficient 
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What’s wrong with MiniMax 

 Minimax is horrendously 

inefficient 

 If we go to depth d, 

branching rate b, 

 we must explore bd nodes 

 but many nodes are wasted 

 We needlessly calculate the 

exact score at every node 

 but at many nodes we don’t 

need to know exact score 

 e.g. outlined nodes are 

irrelevant 
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The Solution   

 Start propagating costs as soon as leaf nodes are 

generated 

 Don’t explore nodes which cannot affect the choice 

of move 

 I.e. don’t explore those that we can prove are no better 

than the best found so far 

 This is the idea behind alpha-beta search 
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Alpha-Beta search 

 Alpha-Beta =   

 Uses same insight as branch and bound 

 When we cannot do better than the best so far 

 we can cut off search in this part of the tree 

 More complicated because of opposite score 

functions 

 To implement this we will manipulate alpha and beta 

values, and store them on internal nodes in the 

search tree 
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Alpha and Beta values 

 At a Mx node we will store an alpha value 

 the alpha value is lower bound on the exact minimax score 

 the true value might be   

 if we know Min can choose moves with score <  

 then Min will never choose to let Max go to a node 

where the score will be  or more 

 At a Min node,  value is similar but opposite 

 Alpha-Beta search uses these values to cut search 
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Alpha Beta in Action 

 Why can we cut off search? 

 Beta = 1 < alpha = 2 where 

the alpha value is at an 

ancestor node 

 At the ancestor node, Max 

had a choice to get a score 

of at least 2 (maybe more) 

 Max is not going to move 

right to let Min guarantee a 

score of 1 (maybe less) 
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Alpha and Beta values 

 Mx node has  value 

 the alpha value is lower bound on the exact minimax score 

 with best play M x can guarantee scoring at least  

 Min node has  value 

 the beta value is upper bound on the exact minimax score 

 with best play Min can guarantee scoring no more than   

 At Max node, if an ancestor Min node has  <  

 Min’s best play must never let Max move to this node 

 therefore this node is irrelevant 

 if  = , Min can do as well without letting Max get here 

 so again we need not continue 
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Alpha-Beta Pruning Rule 

 Two key points: 

 alpha values can never decrease 

 beta values can never increase 

 Search can be discontinued at a node if: 

 It is a Max node and  

 the alpha value is  the beta of any Min ancestor 

 this is beta cutoff 

 Or it is a Min node and   

 the beta value is   the alpha of any Max ancestor  

 this is alpha cutoff 
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Calculating Alpha-Beta values 

 Alpha-Beta calculations are similar to Minimax 

 but the pruning rule cuts down search 

 Use concept of ‘final backed up value’ of node 

 this might be the minimax value  

 or it might be an approximation where search cut off 

 less than the true minimax value at a Max node 

 more than the true minimax value at a Min node 

 in either case, we don’t need to know the true value 
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Final backed up value 

 Like MiniMax 

 At a Max node: 

 the final backed up value is equal to the: 

 largest final backed up value of its successors 

 this can be all successors (if no beta cutoff) 

 or all successors used until beta cutoff occurs 

 At a Min node 

 the smallest final backed up value is equal to the  

 smallest final backed up value of its successors 

 min of all successors until alpha cutoff occurs 
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Calculating alpha values 

 At a Mx node 

 after we obtain the final backed up value of the first child 

 we can set  of the node to this value 

 when we get the final backed up value of the second child 

 we can increase  if the new value is larger  

 when we have the final child, or if beta cutoff occurs 

 the stored  becomes the final backed up value 

 only then can we set the  of the parent Min node 

 only then can we guarantee that  will not increase 

 Note the difference 

 setting alpha value of current node as we go along 

 vs. propagating value up only when it is finalised 
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Calculating beta values 

 At a Min node 

 after we obtain the final backed up value of the first child 

 we can set  of the node to this value 

 when we get the final backed up value of the second child 

 we can decrease  if the new value is smaller  

 when we have the final child, or if alpha cutoff occurs 

 the stored  becomes the final backed up value 

 only then can we set the  of the parent Max node 

 only then can we guarantee that  will not decrease 

 Note the difference 

 setting  beta value of current node as we go along 

 vs. propagating value up only when it is finalised 
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Move ordering Heuristics  

 Variable ordering heuristics irrelevant 

 value ordering heuristics = move ordering heuristic 

 The optimal move ordering heuristic for alpha-beta .. 

 … is to consider the best move first 

 I.e. test the move which will turn out to have best final 

backed up value 

 of course this is impossible in practice 

 The pessimal move ordering heuristic … 

 … is to consider the worst move first 

 I.e. test move which will have worst final backed up value 
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Move ordering Heuristics  

 In practice we need quick and dirty heuristics 

 will neither be optimal nor pessimal 

 E.g. order moves by static evaluation function 

 if it’s reasonable, most promising likely to give good score 

 should be nearer optimal than random 

 If static evaluation function is expensive 

 need even quicker heuristics 

 In practice move ordering heuristics vital 
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Theoretical Results 

 With pessimal move ordering, 

 alpha beta makes no reduction in search cost 

 With optimal move ordering 

 alpha beta cuts the amount of search to the square root 

 I.e.  From bd to bd = bd/2 

 Equivalently, we can search to twice the depth  

 at the same cost 

 With heuristics, performance is in between 

 alpha beta search vital to successful computer play 

in 2 player perfect information games 
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Summary and Next Lecture 

 Game trees are similar to search trees   

 but have opposing players 

 Minimax characterises the value of nodes in the tree 

 but is horribly inefficient 

 Use static evaluation when tree too big 

 Alpha-beta can cut off nodes that need not be 

searched 

 can allow search up to twice as deep as minimax 

 Next Time: 

  Chinook, world champion Checkers player 

 


