

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

Alpha Beta Search

Artificial Intelligence

<u>Alpha Beta Search</u>

Part I: The idea of Alpha Beta Search

Part II: The details of Alpha Beta Search

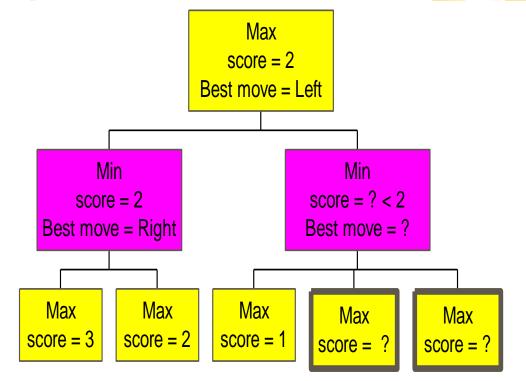
Part III: Results of using Alpha Beta

Reminder

- We consider 2 player perfect information games
- Two players, Min and $M\alpha x$
- Leaf nodes given definite score
- backing up by MiniMax defines score for all nodes
- Usually can't search whole tree
 - Use static evaluation function instead
- MiniMax hopelessly inefficient

What's wrong with MiniMax

- Minimax is horrendously inefficient
- If we go to depth d, branching rate b,
 - we must explore b^d nodes
- but many nodes are wasted
- We needlessly calculate the exact score at every node
- but at many nodes we don't need to know exact score
 - e.g. outlined nodes are irrelevant



The Solution

- Start propagating costs as soon as leaf nodes are generated
- Don't explore nodes which cannot affect the choice of move
 - I.e. don't explore those that we can prove are no better than the best found so far
- This is the idea behind alpha-beta search

Alpha-Beta search

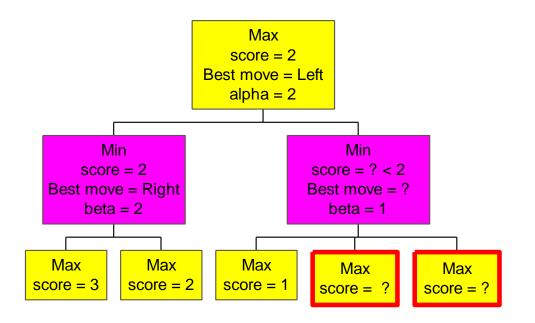
- Alpha-Beta = $\alpha \beta$
- Uses same insight as branch and bound
 - When we cannot do better than the best so far
 - we can cut off search in this part of the tree
 - More complicated because of opposite score functions
- To implement this we will manipulate alpha and beta values, and store them on internal nodes in the search tree

Alpha and Beta values

- At a M α x node we will store an alpha value
 - the alpha value is *lower bound* on the exact minimax score
 - the true value might be $\geq \alpha$
 - if we know Min can choose moves with score $< \alpha$
 - then Min will never choose to let Max go to a node where the score will be α or more
- At a Min node, β value is similar but opposite
- Alpha-Beta search uses these values to cut search

Alpha Beta in Action

- Why can we cut off search?
- Beta = 1 < alpha = 2 where the alpha value is at an ancestor node
- At the ancestor node, Max had a choice to get a score of at least 2 (maybe more)
- Max is not going to move right to let Min guarantee a score of 1 (maybe less)



Alpha and Beta values

Max node has a value

- the alpha value is *lower bound* on the exact minimax score
- with best play M αx can guarantee scoring at least α

Min node has β value

- the beta value is *upper bound* on the exact minimax score
- with best play Min can guarantee scoring no more than β
- At Max node, if an ancestor Min node has $\beta < \alpha$
 - Min's best play must never let Max move to this node
 therefore this node is irrelevant
 - if β = α, Min can do as well without letting Max get here
 so again we need not continue

Alpha-Beta Pruning Rule

Two key points:

- alpha values can *never decrease*
- beta values can *never increase*
- Search can be discontinued at a node if:
 - It is a Max node and
 - I the alpha value is \geq the **beta** of any Min ancestor
 - this is beta cutoff
 - Or it is a Min node and
 - the beta value is \leq the **alpha** of any Max ancestor
 - this is alpha cutoff

Calculating Alpha-Beta values

Alpha-Beta calculations are similar to Minimax

- but the pruning rule cuts down search
- Use concept of 'final backed up value' of node
 - this might be the minimax value
 - or it might be an approximation where search cut off
 - I less than the true minimax value at a Max node
 - *more* than the true minimax value at a Min node
 - in either case, we don't need to know the true value

Final backed up value

- Like MiniMax
- At a Max node:
 - the final backed up value is equal to the:
 - largest final backed up value of its successors
 - this can be all successors (if no beta cutoff)
 - or all successors used until beta cutoff occurs
 - At a Min node
 - the smallest final backed up value is equal to the
 - smallest final backed up value of its successors
 - min of all successors until alpha cutoff occurs

Calculating alpha values

At a Max node

- after we obtain the final backed up value of the first child
 we can set α of the node to this value
- when we get the final backed up value of the second child
 - we can increase α if the new value is larger
- when we have the final child, or if beta cutoff occurs
 - I the stored $\boldsymbol{\alpha}$ becomes the final backed up value
 - I only then can we set the β of the parent Min node
 - only then can we guarantee that β will not increase
- Note the difference
 - setting alpha value of current node as we go along
 - *vs.* propagating value up only when it is finalised

Calculating beta values

At a Min node

- after we obtain the final backed up value of the first child
 we can set β of the node to this value
- when we get the final backed up value of the second child
 - we can decrease β if the new value is smaller
- when we have the final child, or if alpha cutoff occurs
 - I the stored β becomes the final backed up value
 - only then can we set the α of the parent Max node
 - only then can we guarantee that α will not decrease
- Note the difference
 - setting beta value of current node as we go along
 - *vs.* propagating value up only when it is finalised

Move ordering Heuristics

- Variable ordering heuristics irrelevant
 - value ordering heuristics = move ordering heuristic
 - The optimal move ordering heuristic for alpha-beta ..
 - is to consider the best move first
 - I.e. test the move which will turn out to have best final backed up value
 - of course this is impossible in practice
 - The pessimal move ordering heuristic ...
 - ... is to consider the worst move first
 - I.e. test move which will have worst final backed up value

Move ordering Heuristics

- In practice we need quick and dirty heuristics will neither be optimal nor pessimal
- E.g. order moves by static evaluation function
 - if it's reasonable, most promising likely to give good score
 - should be nearer optimal than random
- If static evaluation function is expensive
 - need even quicker heuristics
 - In practice move ordering heuristics vital

Theoretical Results

- With pessimal move ordering,
 - alpha beta makes no reduction in search cost
- With optimal move ordering
 - alpha beta cuts the amount of search to the square root
 - I.e. From b^d to $\sqrt{b^d} = b^{d/2}$
 - Equivalently, we can search to twice the depth
 - at the same cost
- With heuristics, performance is in between
- alpha beta search vital to successful computer play in 2 player perfect information games

Summary and Next Lecture

Game trees are similar to search trees

- but have opposing players
- Minimax characterises the value of nodes in the tree
 - but is horribly inefficient
- Use static evaluation when tree too big
 - Alpha-beta can cut off nodes that need not be searched
 - can allow search up to twice as deep as minimax

Next Time:

Chinook, world champion Checkers player